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This paper presents a way to accomodate large numbers of

crystal structures, as present in e.g. the Cambridge Structural

Database (CSD), in a self-organizing map. The structures are

represented by their calculated powder diffraction patterns.

The use of a recently introduced similarity criterion is

essential: the weighted cross-correlation. This accurately

reflects the similarities of the powder patterns and therefore,

indirectly measures the resemblance of crystal packings. It will

be shown that good results are obtained, even if the network is

trained with a small subset of a complete database. This makes

it possible to construct the map on common hardware in a few

hours. Such a map provides several possibilities for two-

dimensional visualization, but additionally has a number of

important applications. Two such applications are fast and

easy screening of a database, and providing an overview of the

contents of a database in terms of structural diversity of

specific chemical classes of compounds, e.g. steroids or

peptides. A third is the selection of archetypical structures,

covering the complete structural space.
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1. Introduction

A unique and practical representation of a crystal structure is

not easy to define and, therefore, sophisticated methods are

needed to assess structural similarity. A powder diffraction

pattern is a global descriptor of a crystal structure or, more

precisely, of the periodic electron density in a crystal. Such a

descriptor can be calculated from database entries and,

moreover, can be obtained experimentally. In general, the

similarity between powder diffraction patterns reflects the

packing similarity between underlying crystal structures. This

way of expressing the relations between crystal structures is

different from, and in a way more general than, the traditional

criteria of (reduced) cell dimensions and space group.

The positions of the peaks in powder diffraction patterns

are very sensitive to small deviations in the unit-cell para-

meters, whereas the variations in the scattering power of

atoms influence the intensities of the peaks. As a result,

strongly related structures may give powder patterns that look

similar from an overall point of view but may differ signifi-

cantly on a more local scale. For this reason comparison of

powder diffraction patterns, for the purpose of analysing

structural similarity, is not straightforward.

The recently introduced weighted cross-correlation (WCC;

de Gelder et al., 2001) is a similarity measure for patterns in

which the primary information is in both the positions and the

amplitudes of the features. It is based on cross-correlation and

therefore uses a neighbourhood in the calculation of similarity.



This neighbourhood is taken into account using a triangular

weighting function, with a user-defined width. The validity of

WCC-based similarities has been shown in several applica-

tions, such as the clustering of powder patterns (de Gelder et

al., 2001; Willighagen et al., 2005), finding unit-cell parameters

from powder patterns (also known as indexing; Hageman et

al., 2003) and identifying rotational constants from high-

resolution fluorescence spectra (Hageman et al., 2000; Meerts

et al., 2004).

The WCC can also be used to investigate the relations

between compounds in a large database. However, direct

pairwise comparisons are not computationally feasible given

the current database sizes and since new data are being

generated at an ever faster rate, this problem will become even

more difficult in the future. One way to avoid this is to provide

a mapping of all the database compounds to two dimensions.

This kind of visualization is an appealing way to obtain a

complete overview of a large database. Several general

methods exist, but not all are suitable for powder diffraction

patterns. As an example, principal component analysis (PCA;

Jackson, 1991) in essence compares data on a point-by-point

basis and as a result distorts similarity relations when applied

to powder patterns. In fact, one should start from similarities,

such as calculated by a measure like the WCC. Performing

PCA on the similarity matrix, however, is not easy, if possible

at all, because of the size of the matrix. The same problem

exists for multi-dimensional scaling (MDS; Mardia et al.,

1979), a collection of non-linear extensions of PCA, based on

the similarity matrix. In MDS, the objects are positioned in a

two-dimensional space in such a way that distances in the

plane are a direct measure of dissimilarities in the original

space. While this is clearly a desirable feature, the method

does not provide a direct mapping to two dimensions; for new

data, the (dis)similarity matrix should be recalculated and the

MDS repeated.

An alternative is formed by a class of artificial neural

networks called Self-Organizing Maps (SOMs) or Kohonen

maps (Kohonen, 1982, 2001). Objects are mapped to a two-

dimensional grid of units, rather than a continuous space, in

such a way that very similar objects are mapped to the same

unit or to units which are close together in the map. Thus, it is

topology rather than dissimilarity that is graphically repre-

sented in the map. In other words, the dissimilarity of the

neighbouring units is not constant throughout the map.

During the training phase, the optimal unit weights are

adapted (see x3). Although this procedure can be time-

consuming, the amount of memory needed is limited. More-

over, training has to be performed only once: after training,

new objects can be mapped quickly to the network by deter-

mining which unit in the map is most similar. The net can also

easily be updated when new data become available. In this

paper, we combine the WCC function with Kohonen maps to

visualize large structural databases, such as the Cambridge

Structure Database (Allen, 2002).

Such a visualization may serve a variety of purposes. Firstly,

the visualization itself is of scientific interest as it may show

groupings in the data or relationships that might otherwise

have gone unnoticed. The structure of the map reflects the

structure of the database, but in a much more accessible

format. We will show several illustrative examples below (see

x5); other examples, using standard difference measures, can

be found in the literature, e.g. the mapping of the IR spectra of

organic compounds (Melssen et al., 1993), dihedral angles of

DNA dinucleotides (Beckers et al., 1997) and lipids (Hyvonen

et al., 2001), and the complexation properties of metal ions

(Pletnev & Zernov, 2002).

The second application that we mention here is the rapid

screening of the similarities of new compounds. Given that a

database itself may often contain hundreds of thousands of

compounds, comparing a new compound with the whole

database may take quite some time. Comparison with the units

in a SOM is much quicker. One can then concentrate on all the

compounds which are mapped to the units that are more

similar than a certain cutoff. A similar example in the field of

proteomics can be found in Vracko & Basak (2004).

The paper is organized as follows: first we review the

background of the WCC measure. Next, we show how the self-

organizing maps are created and in which way the WCC is

employed in both training and classification phases. Next, the

data that are used to illustrate our approach, and the software

(available via the web), are briefly described. The results show

that meaningful maps can be obtained with modest resources.

Several applications are shown. The paper ends with a

discussion of the possibilities for further enhancements.

2. Comparison of powder diffraction patterns

As shown in earlier publications (de Gelder et al., 2001;

Hageman et al., 2003), a meaningful comparison of powder

patterns to assess structural similarity is not possible unless the

fact that peaks may shift with respect to each other is taken

into account. A (dis)similarity criterion that does this is the

weighted cross-correlation (WCC; de Gelder et al., 2001),

which basically is the area under the cross-correlation curve,

weighted by the shift, and normalized so that identical

patterns give a similarity value of 1. This can be written as

WCC ¼
f
0

Wg

ðf
0
Wf Þ

1=2
ðg
0
WgÞ

1=2
; ð1Þ

where f and g are powder pattern profiles (column vectors, the

prime symbol indicates the transpose), and W is a weight

matrix (see also Stephenson & Binsch, 1980). The latter is a

banded matrix containing values of one on the diagonal. In

our application, values decrease linearly with the distance

from the diagonal; further away than a specific threshold (the

triangle width) values are zero. A WCC with a triangle width

of zero, corresponding to a diagonal weight matrix, leads (for

mean-centred patterns) to the well known Pearson product-

moment correlation.
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3. Self-organizing feature maps

A Kohonen neural network or self-organizing feature map

(Kohonen, 2001) consists of a set of non-interconnected units

which are spatially ordered according to some topology;

typically a two-dimensional hexagonal or rectangular grid is

chosen. Each unit is equipped with a weight vector, of which

the number of elements is equal to the number of variables per

input object (in this case, a powder diffraction pattern).

Intuitively, the operation of a Kohonen neural network can be

compared with the well known non-linear Mercator projection

of the three-dimensional Earth onto a flat, two-dimensional,

topographical map.

Before the training of the network, the elements of all

weight vectors are initialized by random values in a data-set

specific range. Then, all the objects of the pre-selected training

set are presented to all units in the network, in random order.

The unit in the map possessing the weight vector most similar

to the presented object is assigned to be the winner. Subse-

quently, the weight vectors of this unit and its closest neigh-

bours in the map are updated in such a way as to become more

similar to the presented input object. The amount of change is

governed by a parameter, the learning rate. This iterative

process of weight updating is repeated until all objects

belonging to the training set are presented a sufficient number

of times to the network.

The size of the neighbourhood is of vital importance to

guarantee that relevant features of the entire input space are

embedded in the weight vectors. Initially, the size of the

neighbourhood is equal to that of the size of the map itself. In

this phase of network training, global characteristics of the

database are captured into the weights. During training, the

size of the neighbourhood is gradually decreased. This

neighbourhood shrinkage forces local clusters of units to

represent specific combinations of features, which are present

in the data set. During the last phase, which takes most of the

learning iterations, only the weight of the winning unit itself is

adapted; as a consequence, such a unit becomes specialized to

those objects which are frequently mapped onto it. It should

be noted that initially the leaning rate is relatively high

(forcing global adaptation of the units in the map). During the

training process, this rate is decreased gradually to a small

value (allowing individual units to diversify).

Various similarity measures can be applied to determine the

winning unit. Rather than using the common Euclidean

distance measure, in this paper we adopt the WCC as the

similarity criterion. Obviously, the width of the WCC function

interferes with the granularity of the final mapping: a very

narrow WCC triangle will result in a speckled ‘high-definition’

but noisy map, whereas a triangle which is too wide yields a

smoothing effect which probably blurs the desired specificity

of the units.

After training, mapping a new object is carried out by

simply calculating the similarity of the new object with all the

unit vectors and assigning the object to the unit with maximal

similarity. This is a very fast operation since the number of

similarity calculations is equal to the number of units in the

map. Usually, this is orders of magnitudes smaller than the size

of the training set.

4. Experimental

4.1. Data

To illustrate the method, we used several data sets. The first

is a small data set of 205 powder patterns, calculated from

structures in the CSD (November 2003 release, plus January

and April 2004 updates) by searching on structures similar to

12 quite different ‘seed’ structures. For this, the IsoQuest

package (de Gelder & Smits, 2004, 2005) was used; the cutoff

value for including structures in a class was set to a value that

leads to a consistent set of related compounds. Each of these

12 seed structures led to a specific class, as shown in Fig. 1. Not

all classes are equally ‘tight’: for instance, in class 3 (ecarab)

there is much more structural diversity than in class 12

(elamin). This difference is reflected in the powder patterns.

The second data set is a random selection of 11 165 widely

varying crystal structures from the CSD (up to April 2004).

Only five of the patterns from the small set occur in the larger

set: there is one pattern from each of the ecarab, doskeb and

cuxqan classes, and two patterns are from the alacac01 class.

Two further data sets are selected from the CSD (November

2004 release): a set of 1262 peptides and a set of 2303 steroids.

The latter are selected by performing a search on the typical

arrangement of three six-membered rings and one five-

membered ring, such as is visible in the structure of ecarab in

Fig. 1. It should be noted that this selection procedure yields a

few structures that do not exactly conform to the definition of

a steroid. The peptides are selected by searching for structures

containing at least one amino acid, using the program

Conquest (Bruno et al., 2002). One structure, siqvix, appears in

both the peptide and steroid sets. Finally, all 5789 structures in

the July 2004 update of the CSD are also mapped to the

trained network; of course, none of these is present in the

April 2004 subset that was used for training.

All data sets include 2� values up to 25�, with a sampling

rate of 0.05�. Values below 1� are not taken into account since

no features were present. A pattern therefore consists of 481

intensity values (counts). The Cu K�1 wavelength is used to

calculate the powder diffraction patterns. These settings lead

to a crystal structure description with a resolution of

approximately 3.6 Å. Other choices are possible, of course.

Intensity counts are scaled by taking square roots, analogous

to the IsoQuest program (de Gelder & Smits, 2004, 2005). The

largest intensity is then set to 100 units.

4.2. Similarity calculations

Comparing crystal structures on the basis of e.g. cell para-

meters is very easy and fast, but only considers periodicity and

ignores the electron density distribution within the unit cell.

Additionally, there is a risk of missing similarities between

compounds, either because of the ambiguity in choosing the

unit cell or because of symmetry-related issues. Directly

comparing crystal packings, as described by powder diffraction
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patterns, offers a complementary approach where these diffi-

culties are not present.

Triangle widths of 0.5, 1.0, 1.5 and 2.0� are used to deter-

mine similarities by the WCC criterion. Triangles which are

too narrow ignore the neighbourhood of features in calcu-

lating similarities; triangles which are too broad take too much

of the neighbourhood into account, leading to uniformly high

similarity values without much discriminatory power. Calcu-
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Figure 1
The 12 seed structures. The number of structures in each class is indicated in parentheses.



lation times for broad triangles are also longer in the current

implementation. The best triangle is the narrowest one that

still gives consistent and true similarities.

4.3. Network training

Several parameters must be set for training self-organizing

maps: map size and topology, the learning parameter � and the

neighbourhood. The size of the map depends on the amount of

detail visualized: the more units, the more distinct features can

be distinguished. For the set of 11 165 structures, which will

primarily be used for visualization and to quickly find similar

compounds, we use a 40 � 40 map. Thus, the number of units

in the map is approximately 15% of the number of objects in

the database.

The network topology in this paper is a hexagonal network,

in which the distances to all six neighbours of a unit are equal.

Moreover, all edges of the network are joined so that there are

no edge units and all units have six neighbours. One can also

imagine replicates of the map placed in all eight horizontal,

vertical and diagonal neighbouring positions. In the plots, of

course, this cannot be visualized. As a consequence, any unit

in the map may be used as the central unit without changing

the properties of the map. In this paper, we show the maps

without this kind of transposition.

The number of training events for the maps shown in this

paper is 200 times the number of patterns that are presented.

An update consists of a weighted average of the unit weight

and the new pattern; the weight of the new pattern is the

learning parameter �. During training, � decreases linearly

from 0.05 to 0.01. The neighbourhood decreases exponentially.

At the start of training the whole map is part of the neigh-

bourhood. The neighbourhood decreases in such a way that

after one third of the training phase only the winning unit is

updated.

4.4. Software

All procedures are implemented in R (Ihaka & Gentleman,

1996), with time-critical elements, such as the calculation of

cross- and autocorrelations and the training of the network, in

C. It is available as an R package ‘wccsom’ from the web at

http://www.cac.science.ru.nl/software. The core of the package

is modelled after the SOM functions in the recommended R

package ‘class’, written by Brian Ripley. Many additional

functions, most notably plotting features, have been added.

5. Results

As an example, we used the 205 test patterns to train a six-by-

six Kohonen map. The resulting mapping is shown in the left

plot of Fig. 2. In principle, the mapping depends on the

(random) initial starting point, but the results shown here are

representative of repeated mappings. All classes are mapped

into different units. Class 3, showing the highest diversity in

the patterns, is mapped to five units; bear in mind that the

edges of the map are folded onto each other so that all the

units containing patterns of class 3 are actually neighbours.

Class 5 is mapped to three units and all other classes are

mapped to only one unit. In this case, a triangle width of 1.5� is

used for the WCC function; similar results were obtained for

other widths.

Fig. 3 shows the patterns mapped to units 1, 7 and 18 of the

six-by-six map, respectively, and the weights associated with

these units. Unit 1 contains all patterns from class 4, and unit

18 contains a large portion of the class 3 patterns. Clearly, the

weight vectors are very similar to the mapped patterns. Unit 7

serves as a transition between units 1 and 18 (since the edges

of the map are joined, unit 7 is also a neighbour of unit 18).

This is a general feature of Kohonen maps: even ‘empty’ units

are important. The width of the features in the unit weights is

directly related to the triangle width employed, in this case

1.5�. Narrower triangles lead to narrower features.

In the right plot of Fig. 2, the effect of doubling the number

of units in both directions is shown. Again, class 3 is the most

dispersed, although now all classes occupy more than one unit.

In almost all cases, though, patterns from one class are in one

contiguous cluster of units. As there is more freedom, repe-

ated mappings may look quite different. Again, in all cases a

similar class separation is

achieved. This shows that good,

interpretable maps may be

achieved as long as the map has at

least a certain minimal size.

Obviously, the data set of

11 165 patterns needs to be

mapped to a larger grid than the

205 test set patterns. Moreover,

since this is a random data set,

there is no specific class structure

and it is to be expected that all

units will contain patterns.

Indeed, this can be seen in Fig. 4,

where the 1600 units in the

40 � 40 map are coloured

according to the number of

patterns mapped to them: all units
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Figure 2
Mapping of the 205 patterns onto a 6 � 6 grid (left plot) and a 12 � 12 grid (right plot). Objects are
indicated by their class number; for each class a different colour is used.



contain at least one pattern. The unit weights of the map show

similar transitions as in Fig. 3. Interestingly, not all weight

vectors show the same number of features. Some appear quite

empty and seem to function mainly as buffers between more

explicitly defined weight vectors.

In Fig. 5 the convergence of the network during training is

visualized. The x axis shows the number of iterations, where

one iteration corresponds to one presentation of the whole

data set to the network. The y axis shows the median absolute

deviation of the patterns with the weight vectors of the

network. The vertical grey lines indicate when the network

neighbourhood has shrunk to such an extent that fewer units

will be marked as ‘neighbours’; the rightmost grey line (after

one-third of all iterations) indicates that, from that moment

on, only the winning unit is updated. Clearly, at the end of the

training no further changes occur.

To further assess the quality of the trained network, we

project the small data set of 205 patterns on the large map,

using the WCC value with a triangle of 1.5� – the same width

that was used during the training of the map. Remember that

only five of the patterns in the small set were also present in
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Figure 4
Number of patterns mapped on each of the units in the 40 � 40 grid: the
total number is 11 165. Note that the distribution is fairly even: at most
19 patterns are mapped to a unit. The triangle width for the WCC value
is 1.5�.

Figure 3
Weight vectors of units 1 (top plot) and 18 (bottom plot), with the
patterns mapped to these units superimposed in red. Unit 1 is the unit at
the bottom left, containing all patterns of class 4; unit 18 is the rightmost
unit at the third row from the bottom and contains patterns from class 3.

Figure 5
Progress during training: the median absolute deviation between a
presented pattern and the weight vector of the winning unit. After one-
third of the iterations (rightmost grey line), only the winning unit is
updated.



the large set. If the network really has captured the structure

of the powder patterns, the classes again should be visible in

the map. This is indeed the case, as shown in Fig. 6. In most

cases, there is a strong concentration of compounds of one

class into one or two units, and some class members that are

mapped elsewhere. Class 3 is essentially mapped to two

separate units; as is class 12. The split of class 12, one of the

least diverse classes, shows that it is possible that two or more

units in the network end up with approximately the same unit

vectors. Members of such a class will be mapped on any of

these units. Some other classes, such as 1 and 11, are more

spread out.

As an illustration, Fig. 7 shows the similarity with unit-code

vectors for the 12 ‘seed’ compounds. Each compound is

mapped to the unit with the highest similarity (indicated with

the blue crosshairs). Obviously, the similarity pattern is

markedly different for different classes, but patterns from one

class in general show very similar images.

When mapping new compounds to a trained map, a logical

objective is to quickly find similar compounds. One could

concentrate on the units that show the highest similarity to the

new compound, and investigate all patterns that are mapped

to these units. We can use our small test set of 205 compounds

to investigate the influence of the triangle width for such a

purpose. Suppose we map each of the ‘seed’ patterns, as in

Fig. 7, one could ask: how many units should be selected to

include all members of the respective classes? The results are

given in Table 1 for four different triangle widths. In many

cases, only a few units have to be considered to find all

members of a class; in some cases, this number seems rela-

tively high. However, this is usually because of one or a few

patterns that are less similar to the seed pattern. As an

example, for a triangle width of 1.5�, all in all, 11 of the 205

structures are not within the best 20 units, and 22 of the 205

structures are not in the top five. There is obviously a trade-off

between speed and completeness. Overall, triangle widths of

1.0–1.5� are optimal, in agreement with earlier results (de

Gelder et al., 2001).

6. Applications

Several applications of Kohonen maps, as detailed here, can be

envisaged (see also Zupan & Gasteiger, 1999). First, the map

can be used to visualize the occupancy of structural space for

various classes of compounds. Mapping both the peptide and

the steroid data sets to the trained network leads to the images

shown in Fig. 8. The 2303 steroids are mapped to 654 units;

unit 1097 has most hits, with 32 steroids mapped to it. The

more diverse set of 1262 peptides is mapped to 638 units, with

no unit containing more than 10 peptide structures. There are

297 units containing representatives of both classes. Clearly,

the two data sets show a different mapping. This is remarkable

and unexpected, since it is known that small changes in

chemical structure in general may lead to major changes in

crystal packing. In contrast, the July 2004 update of the CSD

covers almost the whole map (1472 units).

Furthermore, one may use the map to identify compounds

with similar crystal packings. Not only is it no longer necessary

to perform a pair-wise comparison between all objects in the

database, the map also presents an appealing visualization of

groupings in the data and as such is more informative than lists

of compounds with a high similarity. Many publications have

appeared that address the issue of isostructurality. In one of

the papers of Kálmán et al. (1993), a small set of steroid

structures is described that show isostructural relationships:

digitoxigenin (digtox), (21S)-methyldigitoxigenin (jidnoz),

(21R)-methyldigitoxigenin (boktie), digirezigenin (cuxyav)

and 3-epidigitoxigenin (dhceno). If we take digitoxigenin as a

search compound and map its corresponding pattern in the

trained network, we can select the five units with the highest

similarity and analyse their contents. This leads to a set of 59

other steroids. These include the other compounds mentioned

by Kálmán et al. (1993) showing that this is a quick and elegant
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Table 1
The number of units used to consider, in order to capture all the class
members, upon projection of the 12 ‘seed’ compounds to the trained map.

The optimal width is somewhere around 10–15�.

Class Seed compound � ¼ 0:5 � ¼ 1:0 � ¼ 1:5 � ¼ 2:0

1 wadlod 257 205 73 14
2 tstilb02 136 129 138 106
3 ecarab 511 577 217 371
4 alacac01 8 22 11 120
5 doskeb 55 9 107 206
6 ecabuf 22 6 3 5
7 foqyuf 10 2 1 8
8 huxwom 35 11 13 4
9 mnphcy 307 71 4 209

10 cuxqan 108 18 5 12
11 gucsec 180 15 196 210
12 elamin 1 1 2 1

average 135.8 88.8 64.2 105.5

Figure 6
Projection of the test set of 205 compounds into the map trained with
11 165 compounds. Again, the classes are clearly localized.



way to search for isostructural compounds. Obviously, this also

holds for new compounds. One can of course investigate all

units that show a similarity above a certain threshold (e.g. 0.9)

rather than of a predefined number of the most similar units.

This procedure is much quicker than a comparison with all

objects in the database. Not only is the map much smaller than

the database, but with only a very low number of matching

units one captures a high percentage of similar compounds.

Mapping digtox, selecting the five best units and with that the

59 most similar steroid patterns, and sorting the results, takes

just over half a second on not very modern hardware (Athlon

1800+ MHz).

A particular advantage of using powder patterns as a

representation of crystal structure is that experimental

patterns may also be used, i.e. patterns for which cell para-

meters and space group are not known. The map may be used

to infer what packing patterns are most likely for a new

compound. Suppose a new experimental steroid powder

pattern is mapped to a unit which contains several other

steroids. Then one could expect that the new compound would

share some global characteristics with them. In principle, this

information could reduce the number of possible unit cells and

space groups and makes structure solution easier. This needs

further research.

Furthermore, the map may serve as a tool for stratified

sampling. The goal is then to identify a small set of ‘repre-

sentative’ or ‘archetypical’ compounds. This is often used in

classification or regression applications to divide a data set

into training and test sets (e.g. Guha et al., 2004). In the current

setting of mapping databases of structures, it is possible to

extract a small set of structures that is representative for the

whole database. Or, put differently, if we would take one

random structure from each of the 1600 units in the map, we

would cover the same chemical space as the 11 165 structures

that were used to train the map. Random sampling would be

less efficient, because small, specific groups can easily be

missed. In polymorph prediction, this feature can be used to

reduce the number of structures before energy minimization
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Figure 7
Smoothed representation of similarities between the 12 calculated powder diffraction patterns of the ‘seed’ compounds and the trained map (the triangle
is 1.5�). The compound is projected onto the point indicated by the crosslines. The colour scale runs from 0.75 (red) to 1.0 (white); a grey colour indicates
similarities lower than 0.75.



without losing potentially interesting candidates. Also the final

ensemble of polymorphs can be assessed in this way.

7. Discussion and future work

Mapping databases of crystal structures to a two-dimensional

grid of neural network units has obvious advantages: it

provides, at a glance, a visualization of the similarities of all

the structures and may show groupings that are not easily

found otherwise. We have argued that the combination of

similarities of powder patterns, as measured by the WCC, and

Kohonen maps is a useful tool for this mapping. Of course,

other choices can be made: it is very well possible to construct

a Kohonen map that shows similarities between e.g. cell

parameters. We think that focusing on electron distributions at

low resolution has several advantages; moreover, it provides

the opportunity to map experimental patterns which may lead

to an easier structure elucidation.

The mapping of the 11 165 structures onto 1600 units shows

that the proposed approach is feasible. The map can be

interpreted and mapping new compounds is straightforward.

Compounds from different classes are mapped to specific

areas in the network. This is not only the case for the small set

of 12 test classes, but also for the less well defined peptide and

steroid sets. The mapping of e.g. the steroid class shows that

related structures are not randomly scattered in the map. One

therefore can speak of a ‘steroid’ region. Of course, this region

overlaps with regions occupied by other chemical families.

Obviously, we have used only a small subset of the CSD in

training the Kohonen map. Nevertheless, the mapping of the

test set of 205 structures, and the peptide and steroid classes

shows that there is enough diversity in the map to accomodate

differences in powder patterns.

One advantage of Kohonen maps is that they can be

updated fairly easily. One can see a situation where the

complete CSD is used for training and where CSD updates are

used to re-train the map. This re-training should strike a

balance between representing the information already in the

map and describing the new structures. The size of such a map

would probably be somewhat larger than the map we have

presented here.

Finally, one can enhance the Kohonen maps as detailed here

for prediction purposes (Kohonen, 2001) in several ways.

These basically consist of a Kohonen map where the units are

arranged in such a way that, in addition to the topological

structure of the powder diffraction data, the properties of

interest, such as a crystal system or unit-cell volume, are used

to colour specific parts of the map. A projection in a certain

part of the map may then be directly translated to a value for

the property of interest. The essential part is that e.g. the unit-

cell volume, during training, partly determines what units are

updated and how they are updated. Therefore, two groups

with similar powder patterns but different cell volumes will be

better separated better than in the unsupervised Kohonen

maps, as seen in the current paper. We will report on these

extensions in the near future.

In conclusion, the visualization of large powder pattern

databases such as those derived from the CSD is made

possible by the application of self-organizing networks

utilizing the WCC similarity measure. This opens up many new

research papers
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Figure 8
Mapping of steroids (top), peptides (middle) and July 2004 update
(bottom) on the trained map. The colour indicates the number of
compounds mapped to that unit; no compounds are mapped to units
depicted in grey. Whereas the peptide and steroid mappings concentrate
in specific regions in the map, the July 2004 update is more or less
uniformly spread out over the whole map, like the original training set.



possibilities to explore and utilize the full potential of a

combination of many different types of compound.
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